Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy

Abstract

The human immunodeficiency virus (HIV) integrates its genome into that of infected cells and may enter an inactive state of reversible latency that cannot be targeted using antiretroviral therapy. Sequencing such a provirus and the adjacent host junctions in individual cells may elucidate the mechanisms of the persistence of infected cells, but this is difficult owing to the 150-million-fold higher amount of background human DNA. Here we show that full-length proviruses connected to their contiguous HIV–host DNA junctions can be assembled via a high-throughput microfluidic assay where droplet-based whole-genome amplification of HIV DNA in its native context is followed by a polymerase chain reaction (PCR) to tag droplets containing proviruses for sequencing. We assayed infected cells from people with HIV receiving suppressive antiretroviral therapy, resulting in the detection and sequencing of paired proviral genomes and integration sites, 90% of which were not recovered by commonly used nested-PCR methods. The sequencing of individual proviral genomes with their integration sites could improve the genetic analysis of persistent HIV-infected cell reservoirs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Application of SIP-seq to ART-treated individuals.
Fig. 2: Demonstration and validation of SIP-seq with HIV-infected cell line samples.
Fig. 3: SIP-seq of HIV in ART-treated participant CD4+ T cells after clonal expansion.
Fig. 4: SIP-seq of HIV proviruses and flanking sequences from CD4+ cells directly from infected individuals.

Similar content being viewed by others

Data availability

The sequence data have been deposited in the Sequencing Read Archive under BioProject accession number PRJCA006195. All other data supporting the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

Custom scripts and functions are available at https://github.com/abateLab.

References

  1. Siliciano, R. F. & Greene, W. C. HIV latency. Cold Spring Harb. Perspect. Med. 1, a007096 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5, 512–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Maartens, G., Celum, C. & Lewin, S. R. HIV infection: epidemiology, pathogenesis, treatment and prevention. Lancet 384, 258–271 (2014).

    Article  PubMed  Google Scholar 

  4. Deeks, S. G. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Buell, K. G. et al. Lifelong antiretroviral therapy or HIV cure: the benefits for the individual patient. AIDS Care Psychol. Socio Med. Asp. AIDS/HIV 28, 242–246 (2016).

    Article  Google Scholar 

  6. Dieffenbach, C. W. & Fauci, A. S. Thirty years of HIV and AIDS: future challenges and opportunities. Ann. Intern. Med. 154, 766–771 (2011).

    Article  PubMed  Google Scholar 

  7. Bui, J. K. et al. Proviruses with identical sequences comprise a large fraction of the replication-competent HIV reservoir. PLoS Pathog. 13, e1006283 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Symons, J., Cameron, P. U. & Lewin, S. R. HIV integration sites and implications for maintenance of the reservoir. Curr. Opin. HIV AIDS 13, 152–159 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiegand, A. et al. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART. Proc. Natl Acad. Sci. USA 114, E3659–E3668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner, T. A. et al. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagner, T. A. et al. An increasing proportion of monotypic HIV-1 DNA sequences during antiretroviral treatment suggests proliferation of HIV-infected cells. J. Virol. 87, 1770–1778 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bruner, K. M. et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature 566, 120–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruner, K. M. et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat. Med. 22, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Einkauf, K. B. et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J. Clin. Invest. 129, 988–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patro, S. C. et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc. Natl Acad. Sci. USA 116, 25891–25899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hiener, B. et al. Identification of genetically intact HIV-1 proviruses in specific CD4+ T cells from effectively treated participants. Cell Rep. 21, 813–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gall, A. et al. Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J. Clin. Microbiol. 50, 3838–3844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clark, I. C. & Abate, A. R. Finding a helix in a haystack: nucleic acid cytometry with droplet microfluidics. Lab Chip 17, 2032–2045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lim, S. W., Tran, T. M. & Abate, A. R. PCR-activated cell sorting for cultivation-free enrichment and sequencing of rare microbes. PLoS ONE 10, e0113549 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Massanella, M. & Richman, D. D. Measuring the latent reservoir in vivo. J. Clin. Invest. 126, 464–472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA 99, 5261–5266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, S. L., Rodrigo, A. G., Shankarappa, R. & Learn, G. H. HIV quasispecies and resampling. Science 273, 415–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan, J. K., Bhattacharyya, D., Lassen, K. G., Ruelas, D. & Greene, W. C. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLoS ONE 8, e77749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lenasi, T., Contreras, X. & Peterlin, B. M. Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4, 123–133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mullins, J. I. & Frenkel, L. M. Clonal expansion of human immunodeficiency virus-infected cells and human immunodeficiency virus persistence during antiretroviral therapy. J. Infect. Dis. 215, S119–S127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pollack, R. A. et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe 21, 494–506 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lorenzo-Redondo, R. et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530, 51–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perez, L. et al. Conflicting evidence for HIV enrichment in CD32+ CD4 T cells. Nature 561, E9–E16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rousseau, C. M. et al. Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes. J. Virol. Methods 136, 118–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Bin Hamid, F., Kim, J. & Shin, C. G. Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update. AIDS Res. Ther. 14, 9 (2017).

    Article  CAS  Google Scholar 

  34. Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, R. X. Single-cell transcriptional landscapes reveal HIV-1-driven aberrant host gene transcription as a potential therapeutic target. Sci. Transl. Med. 12, eaaz0802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baxter, A. E. et al. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 20, 368–380 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han, H. S. et al. Whole-genome sequencing of a single viral species from a highly heterogeneous sample. Angew. Chem. Int. Ed. 54, 13985–13988 (2015).

    Article  CAS  Google Scholar 

  38. Zanini, F., Brodin, J., Albert, J. & Neher, R. A. Error rates, PCR recombination, and sampling depth in HIV-1 whole genome deep sequencing. Virus Res. 239, 106–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Di Giallonardo, F. et al. Next-generation sequencing of HIV-1 RNA genomes: determination of error rates and minimizing artificial recombination. PLoS ONE 8, e74249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng, W. J. et al. DIVEIN: a web server to analyze phylogenies, sequence divergence, diversity and informative sites. Biotechniques 48, 405–408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keele, B. F. et al. Identification and characterisation of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, C. Z. et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat. Commun. 6, 6822 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Chan Zuckerberg Biohub grant to A.R.A., a National Institutes of Health grant (R01 HG008978) to A.R.A., a National Institutes of Health grant (U01 AI129206) to A.R.A. and E.A.B. and National Institutes of Health grants (R01 AI125026 and R33 AI122361) to J.I.M. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.S. and A.R.A. conceived the project. C.S., L.L., X.L., Y.L. and P.X. performed the experiments. C.S. sequenced the samples and analysed the data. C.S. and A.R.A. wrote the initial draft of the manuscript. L.P. assisted with patient sample processing. J.I.M. and E.A.B. revised the manuscript. All authors read, reviewed and approved the manuscript.

Corresponding author

Correspondence to Adam R. Abate.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Angela Ciuffi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and references.

Reporting Summary

Peer Review Information

Source data

Source Data for Fig. 4

Sequences to generate the phylogenetic trees in Fig. 4, and the chimaeric read information to determine the integration sites.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Liu, L., Pérez, L. et al. Droplet-microfluidics-assisted sequencing of HIV proviruses and their integration sites in cells from people on antiretroviral therapy. Nat. Biomed. Eng 6, 1004–1012 (2022). https://doi.org/10.1038/s41551-022-00864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00864-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research